Computing Tamagawa numbers of hyperelliptic curves

L. Alexander Betts

King's College, London

ICTP Workshop on Hyperelliptic Curves, 5th September 2017

• K: a p-adic local field $(p \neq 2)$;

- K: a p-adic local field ($p \neq 2$);
- X/K: smooth, proper curve with (semi)stable reduction;

- K: a p-adic local field ($p \neq 2$);
- X/K: smooth, proper curve with (semi)stable reduction;
- $c_{X/K} = c_{\text{Jac}(X)/K}$: Tamagawa number:

- K: a p-adic local field ($p \neq 2$);
- X/K: smooth, proper curve with (semi)stable reduction;
- $c_{X/K} = c_{Jac(X)/K}$: Tamagawa number:
 - a crude measure of the badness of reduction;

- K: a p-adic local field $(p \neq 2)$;
- X/K: smooth, proper curve with (semi)stable reduction;
- $c_{X/K} = c_{Jac(X)/K}$: Tamagawa number:
 - a crude measure of the badness of reduction;
 - appears in the strong BSD conjecture for Jac(X)/K.

- K: a p-adic local field ($p \neq 2$);
- X/K: smooth, proper curve with (semi)stable reduction;
- $c_{X/K} = c_{Jac(X)/K}$: Tamagawa number:
 - a crude measure of the badness of reduction;
 - appears in the strong BSD conjecture for Jac(X)/K.

Question

How can $c_{X/K}$ be computed efficiently? Can one find formulae for Tamagawa numbers in (possibly degenerating) families?

One can find Tamagawa numbers of general curves X/K by the following method:

One can find Tamagawa numbers of general curves X/K by the following method:

• find the dual graph G of X/K, along with its metric and its Frobenius action;

One can find Tamagawa numbers of general curves X/K by the following method:

- find the dual graph G of X/K, along with its metric and its Frobenius action;
- 2 from the dual graph G, calculate the Tamagawa number:

One can find Tamagawa numbers of general curves X/K by the following method:

- find the dual graph G of X/K, along with its metric and its Frobenius action;
- - let $\Lambda = H_1(G)$ be the (integral) homology lattice;
 - consider the embedding $\Lambda \hookrightarrow \Lambda^{\vee}$ induced by the intersection-length pairing;
 - Λ^{\vee}/Λ is the group of components of the Néron model of $Jac(X)/K^{nr}$;
 - $(\Lambda^{\vee}/\Lambda)^{Fr}$ is the group of components of the Néron model of Jac(X)/K;
 - $c_{X/K} = \#(\Lambda^{\vee}/\Lambda)^{Fr}$.

The hyperelliptic algorithm

Theorem (Dokchitser–Dokchitser–Maistret–Morgan)

Let X/K be a hyperelliptic curve with dual graph G, and let ι denote the hyperelliptic involution. Then $T = G/\iota$ is a tree.

Theorem (Dokchitser–Dokchitser–Maistret–Morgan)

Let X/K be a hyperelliptic curve with dual graph G, and let ι denote the hyperelliptic involution. Then $T = G/\iota$ is a tree.

Moreover, G can be reconstructed up to homeomorphism from the pair (T,S), where $S\subseteq T$ is the ramification locus of $G\to T$. We will call such a pair (T,S) a BY tree*.

$\mathsf{Theorem}\;(\mathsf{Dokchitser-Dokchitser-Maistret-Morgan})$

Let X/K be a hyperelliptic curve with dual graph G, and let ι denote the hyperelliptic involution. Then $T = G/\iota$ is a tree.

Moreover, G can be reconstructed up to homeomorphism from the pair (T, S), where $S \subseteq T$ is the ramification locus of $G \to T$. We will call such a pair (T, S) a BY $tree^*$.

The BY tree carries a metric and a *signed* Frobenius action, induced from the corresponding objects on *G*.

$\mathsf{Theorem}\;(\mathsf{Dokchitser-Dokchitser-Maistret-Morgan})$

Let X/K be a hyperelliptic curve with dual graph G, and let ι denote the hyperelliptic involution. Then $T=G/\iota$ is a tree.

Moreover, G can be reconstructed up to homeomorphism from the pair (T, S), where $S \subseteq T$ is the ramification locus of $G \to T$. We will call such a pair (T, S) a BY $tree^*$.

The BY tree carries a metric and a *signed* Frobenius action, induced from the corresponding objects on *G*.

We will formulate a precise and efficient version of the previous algorithm for hyperelliptic curves, replacing the dual graph with its corresponding BY tree.

Overview of the algorithm

First step: From an equation $y^2 = f(x)$, compute the BY tree. [Dokchitser–Dokchitser–Maistret–Morgan]

Overview of the algorithm

First step: From an equation $y^2 = f(x)$, compute the BY tree. [Dokchitser–Dokchitser–Maistret–Morgan]

Second step: From the BY tree, compute $c_{X/K}$ (purely graph-theoretically). [B.]

Given an explicit equation $y^2 = f(x)$ for a hyperelliptic curve X/K, there is a naturally associated *cluster picture*, namely the picture formed by drawing the set of roots of f in \overline{K} , and drawing circles around all the subsets of $\operatorname{Root}_{\overline{K}}(f)$ cut out by discs in \overline{K} .

Given an explicit equation $y^2 = f(x)$ for a hyperelliptic curve X/K, there is a naturally associated *cluster picture*, namely the picture formed by drawing the set of roots of f in \overline{K} , and drawing circles around all the subsets of $\operatorname{Root}_{\overline{K}}(f)$ cut out by discs in \overline{K} .

To obtain the pair (T, S) from the cluster picture associated to f:

• let T_0 be the tree whose vertices are the clusters, and with edges connecting each cluster to its immediate parent;

Given an explicit equation $y^2 = f(x)$ for a hyperelliptic curve X/K, there is a naturally associated *cluster picture*, namely the picture formed by drawing the set of roots of f in \overline{K} , and drawing circles around all the subsets of $\operatorname{Root}_{\overline{K}}(f)$ cut out by discs in \overline{K} .

To obtain the pair (T, S) from the cluster picture associated to f:

- let T_0 be the tree whose vertices are the clusters, and with edges connecting each cluster to its immediate parent;
- let $S_0 \subseteq T_0$ be the subgraph whose edges are the edges as above where the child cluster has odd size, and the vertices of S_0 are just the endpoints of all such edges;

Given an explicit equation $y^2 = f(x)$ for a hyperelliptic curve X/K, there is a naturally associated *cluster picture*, namely the picture formed by drawing the set of roots of f in \overline{K} , and drawing circles around all the subsets of $\operatorname{Root}_{\overline{K}}(f)$ cut out by discs in \overline{K} .

To obtain the pair (T, S) from the cluster picture associated to f:

- let T_0 be the tree whose vertices are the clusters, and with edges connecting each cluster to its immediate parent;
- let S₀ ⊆ T₀ be the subgraph whose edges are the edges as above where the child cluster has odd size, and the vertices of S₀ are just the endpoints of all such edges;
- finally, produce (T, S) from (T_0, S_0) by deleting all the vertices of T_0 (also S_0) corresponding to clusters of size 1.

Consider the hyperelliptic curve X/\mathbb{Q}_3 , given by the equation

$$y^2 = ((x-i)^2 - 3^a)((x+i)^2 - 3^a)(x^2 - 3^b)((x-1)^2 - 3^c).$$

Consider the hyperelliptic curve X/\mathbb{Q}_3 , given by the equation

$$y^2 = ((x-i)^2 - 3^a)((x+i)^2 - 3^a)(x^2 - 3^b)((x-1)^2 - 3^c).$$

The cluster picture is

$$lackbox{0}_{\frac{b}{2}}^+$$
 $lackbox{0}_{\frac{c}{2}}^+$ $lackbox{0}_{\frac{a}{2}}^+$ $lackbox{0}_{\frac{a}{2}}^+$

Consider the hyperelliptic curve X/\mathbb{Q}_3 , given by the equation

$$y^2 = ((x-i)^2 - 3^a)((x+i)^2 - 3^a)(x^2 - 3^b)((x-1)^2 - 3^c).$$

The cluster picture is

 (T_0, S_0) looks like

Consider the hyperelliptic curve X/\mathbb{Q}_3 , given by the equation

$$y^2 = ((x-i)^2 - 3^a)((x+i)^2 - 3^a)(x^2 - 3^b)((x-1)^2 - 3^c).$$

The cluster picture is

The BY tree (T, S) looks like

Step 2: Tamagawa numbers from BY trees

Definition

If T=(T,S) is a BY tree (with metric & Frobenius), we let $\Lambda=H_1(T,S)$ be the relative homology lattice, and $\Lambda\hookrightarrow\Lambda^\vee$ the embedding induced by the intersection-length pairing. The quantity

$$c_T := \#(\Lambda^{\vee}/\Lambda)^{\mathsf{Fr}}$$

is called the Tamagawa number of T.

When T is the BY tree associated to a hyperelliptic curve X/K, $c_T = c_{X/K}$ calculates the Tamagawa number of X.

Step 2: Tamagawa numbers from BY trees

Definition

If T=(T,S) is a BY tree (with metric & Frobenius), we let $\Lambda=H_1(T,S)$ be the relative homology lattice, and $\Lambda\hookrightarrow\Lambda^\vee$ the embedding induced by the intersection-length pairing. The quantity

$$c_T := \#(\Lambda^{\vee}/\Lambda)^{\mathsf{Fr}}$$

is called the Tamagawa number of T.

When T is the BY tree associated to a hyperelliptic curve X/K, $c_T = c_{X/K}$ calculates the Tamagawa number of X.

We want to find a graph-theoretic method for calculating c_T .

Reduction to simple BY trees

For a general BY tree (T, S), $T \setminus S$ may have many components. The closure of a component is itself a BY tree, and the Tamagawa number of (T, S) is the product of the Tamagawa numbers of some of these components, one for each Fr-orbit in $\pi_0(T \setminus S)$.

Reduction to simple BY trees

For a general BY tree (T,S), $T \setminus S$ may have many components. The closure of a component is itself a BY tree, and the Tamagawa number of (T,S) is the product of the Tamagawa numbers of some of these components, one for each Fr-orbit in $\pi_0(T \setminus S)$.

In this way, we can reduce the calculation of Tamagawa numbers to the calculation for *simple* BY trees – those for which S is a subset of the leaves of T. These come in two types, according to the sign of Frobenius.

Tamagawa numbers of (positive) simple BY trees

Formula (B.)

Let (T,S) be a positive simple BY tree with metric and Frobenius. Write $\overline{T}=T/\mathrm{Fr}$ for the quotient tree, and give \overline{T} the metric where an edge \overline{e} corresponding to a Fr-orbit of q edges of length I is given length $I(\overline{e})=I/q$. Write $\overline{S}=S/\mathrm{Fr}\subseteq \overline{T}$, and Q for the product of the sizes of the Fr-orbits in S.

Then

$$c_T = Q \sum \prod_{r=1}^{|S|-1} I(\overline{e}_1) I(\overline{e}_2) \dots I(\overline{e}_{|\overline{S}|-1}),$$

where the sum is taken over all unordered $(|\overline{S}|-1)$ -tuples of edges of \overline{T} which disconnect the points of \overline{S} from one another.

Continuing the earlier example, let's calculate the Tamagawa number of the following BY tree:

Continuing the earlier example, let's calculate the Tamagawa number of the following BY tree:

It is positive and simple, so the formula on the previous slide applies. The product of the sizes of the Frobenius orbits on S is Q=2.

Example (cont.)

The quotient tree \overline{T} is

and the removal of any two edges disconnects the points of \overline{S} , so that the Tamagawa number of T is

$$c_T = 2\left(\frac{a}{2}b + \frac{a}{2}c + bc\right) = ab + ac + 2bc.$$

First step Second step

Any questions?