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K : a p-adic local field (p 6= 2);

X/K : smooth, proper curve with (semi)stable reduction;

cX/K = cJac(X )/K : Tamagawa number:

a crude measure of the badness of reduction;
appears in the strong BSD conjecture for Jac(X )/K .

Question

How can cX/K be computed efficiently?
Can one find formulae for Tamagawa numbers in (possibly
degenerating) families?
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Calculating Tamagawa numbers of general curves

One can find Tamagawa numbers of general curves X/K by the
following method:

1 find the dual graph G of X/K , along with its metric and its
Frobenius action;

2 from the dual graph G , calculate the Tamagawa number:

let Λ = H1(G ) be the (integral) homology lattice;
consider the embedding Λ ↪→ Λ∨ induced by the
intersection-length pairing;
Λ∨/Λ is the group of components of the Néron model of
Jac(X )/K nr;
(Λ∨/Λ)Fr is the group of components of the Néron model of
Jac(X )/K ;
cX/K = #(Λ∨/Λ)Fr.
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Jac(X )/K nr;
(Λ∨/Λ)Fr is the group of components of the Néron model of
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BY trees

Theorem (Dokchitser–Dokchitser–Maistret–Morgan)

Let X/K be a hyperelliptic curve with dual graph G , and let ι
denote the hyperelliptic involution. Then T = G/ι is a tree.

Moreover, G can be reconstructed up to homeomorphism from the
pair (T , S), where S ⊆ T is the ramification locus of G → T . We
will call such a pair (T , S) a BY tree*.

The BY tree carries a metric and a signed Frobenius action,
induced from the corresponding objects on G .

We will formulate a precise and efficient version of the previous
algorithm for hyperelliptic curves, replacing the dual graph with its
corresponding BY tree.
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Overview of the algorithm

First step: From an equation y2 = f (x), compute the BY tree.
[Dokchitser–Dokchitser–Maistret–Morgan]

Second step: From the BY tree, compute cX/K (purely
graph-theoretically). [B.]
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Step 1: BY trees from explicit equations

Given an explicit equation y2 = f (x) for a hyperelliptic curve
X/K , there is a naturally associated cluster picture, namely the
picture formed by drawing the set of roots of f in K , and drawing
circles around all the subsets of RootK (f ) cut out by discs in K .

To obtain the pair (T ,S) from the cluster picture associated to f :

let T0 be the tree whose vertices are the clusters, and with
edges connecting each cluster to its immediate parent;

let S0 ⊆ T0 be the subgraph whose edges are the edges as
above where the child cluster has odd size, and the vertices of
S0 are just the endpoints of all such edges;

finally, produce (T ,S) from (T0,S0) by deleting all the
vertices of T0 (also S0) corresponding to clusters of size 1.
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Example

Consider the hyperelliptic curve X/Q3, given by the equation

y2 = ((x − i)2 − 3a)((x + i)2 − 3a)(x2 − 3b)((x − 1)2 − 3c).

The cluster picture is

looks like
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Consider the hyperelliptic curve X/Q3, given by the equation

y2 = ((x − i)2 − 3a)((x + i)2 − 3a)(x2 − 3b)((x − 1)2 − 3c).

The cluster picture is
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Step 2: Tamagawa numbers from BY trees

Definition

If T = (T , S) is a BY tree (with metric & Frobenius), we let
Λ = H1(T ,S) be the relative homology lattice, and Λ ↪→ Λ∨ the
embedding induced by the intersection-length pairing. The quantity

cT := #(Λ∨/Λ)Fr

is called the Tamagawa number of T .

When T is the BY tree associated to a hyperelliptic curve X/K ,
cT = cX/K calculates the Tamagawa number of X .

We want to find a graph-theoretic method for calculating cT .
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Reduction to simple BY trees

For a general BY tree (T ,S), T \ S may have many components.
The closure of a component is itself a BY tree, and the Tamagawa
number of (T ,S) is the product of the Tamagawa numbers of
some of these components, one for each Fr-orbit in π0(T \ S).

In this way, we can reduce the calculation of Tamagawa numbers
to the calculation for simple BY trees – those for which S is a
subset of the leaves of T . These come in two types, according to
the sign of Frobenius.
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Tamagawa numbers of (positive) simple BY trees

Formula (B.)

Let (T ,S) be a positive simple BY tree with metric and Frobenius.
Write T = T/Fr for the quotient tree, and give T the metric
where an edge e corresponding to a Fr-orbit of q edges of length l
is given length l(e) = l/q. Write S = S/Fr ⊆ T , and Q for the
product of the sizes of the Fr-orbits in S .

Then

cT = Q
∑ |S |−1∏

r=1

l(e1)l(e2) . . . l(e |S|−1),

where the sum is taken over all unordered (|S | − 1)-tuples of edges
of T which disconnect the points of S from one another.
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Example

Continuing the earlier example, let’s calculate the Tamagawa
number of the following BY tree:

It is positive and simple, so the formula on the previous slide
applies. The product of the sizes of the Frobenius orbits on S is
Q = 2.
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Example (cont.)

The quotient tree T is

and the removal of any two edges disconnects the points of S , so
that the Tamagawa number of T is

cT = 2
(a

2
b +

a

2
c + bc

)
= ab + ac + 2bc.
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Any questions?
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