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Introduction The Lawrence–Venkatesh method Lawrence–Venkatesh for Galois sections

Galois sections

Let K be a number field and Y /K a connected smooth proper curve of
genus ≥ 2. The structure map Y → Spec(K ) induces a map

πét
1 (Y )→ GK (∗)

on profinite étale fundamental groups.

A K -rational point on Y is a
splitting of the structure map, and hence induces a splitting of (∗). There
is thus a section map

Y (K )→ Sec(Y /K ) := {splittings of (∗)} .

Technical point: One officially has to make choices of basepoint to make
sense of the above Galois and fundamental groups. All the maps between
profinite groups should be taken to denote outer homomorphisms.
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The section conjecture

Section Conjecture (Grothendieck)

The section map Y (K )→ Sec(Y /K ) is bijective.

Remarks:

The map Y (K )→ Sec(Y /K ) is known to be injective.

Surjectivity is only known in a handful of cases where Sec(Y /K ) can
be shown to be empty.

Grothendieck believed that a proof of the Section Conjecture would
lead to a “topological” proof of the Mordell Conjecture.

Consequence of the Section Conjecture + Faltings’ Theorem

The set Sec(Y /K ) is finite.
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Locally geometric sections

If v is a place of K , then the structure map YKv → Spec(Kv ) induces a
map

πét
1 (YKv )→ Gv := GKv (∗v )

on fundamental groups. Again every Kv -point of Y gives rise to a splitting
of (∗v ) by functoriality, so we have a local section map
Y (Kv )→ Sec(YKv /Kv ). Restriction to a decomposition group at v gives a
map Sec(Y /K )→ Sec(YKv /Kv ).

Definition

An element y ∈ Sec(Y /K ) (section of (∗)) is called locally geometric (or
Selmer) just when y |Gv ∈ Sec(YKv /Kv ) lies in the image of the local
section map for every place v of K . We write Sec(Y /K )l.g. for the set of
locally geometric sections, which contains Y (K ).
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The main theorem

If v is a finite place of K , then we have a localisation map
Sec(Y /K )l.g. → Y (Kv ) sending a locally geometric section y to the
unique Kv -point yv of Y whose associated local section is y |Gv .

Theorem (B.–Stix, in progress)

Let K be a number field containing no CM subfield, let Y /K be a
connected smooth proper curve of genus ≥ 2, and let v be a finite place
of K . Then the image of the localisation map

Sec(Y /K )l.g. → Y (Kv )

y 7→ yv

is finite.
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Aside: The finite descent obstruction

The finite descent obstruction cuts out an intermediate set

Y (K ) ⊆ Y (AK )f−cov
• ⊆ Y (AK )• .

It is believed that in fact Y (K ) = Y (AK )f−cov
• .

Theorem (Harari–Stix)

The image of the localisation map Sec(Y /K )l.g. → Y (AK )• is the finite
descent set Y (AK )f−cov

• .

Rephrasing of the main theorem

In the same setup as the main theorem, the image of the projection
Y (AK )f−cov

• → Y (Kv ) is finite for all finite places v .
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The Lawrence–Venkatesh method

(without good reduction assumptions)
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Associating Galois representations to points

In 2019, Lawrence and Venkatesh re-proved

Theorem (Faltings (Mordell Conjecture))

Y (K ) is finite.

The main idea of the proof, present already in the first proof by Faltings, is
to assign a Galois representation Vy to each rational point y ∈ Y (K ), and
study these instead.

Let X → Y be a smooth proper map. To a point y ∈ Y (K ), we can
associate the Galois representation Hi

ét(Xy ,K̄ ,Qp). This representation is
pure of weight i , unramified outside a fixed finite set of places of K (not
depending on y).
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Constraints on global representations

Lemma (Hermite–Minkowski, Faltings)

Let K be a number field and S a finite set of places of K , and i , d ≥ 0.
Then there are, up to isomorphism, only finitely many semisimple
representations V of GK of dimension d which are unramified and pure* of
weight i outside S .

Consequence: There are only finitely many possibilities for the
representation Vy , if semisimple.

*: char. poly. of geometric Frobenius has integer coefficients and its roots
are Weil numbers of weight i .
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Variation of local representations

Suppose that v is a p-adic place of K . If we have a v -adic
point y ∈ Y (Kv ), then we can assign it the local Galois representation
Hi

ét(Xy ,K̄v
,Qp). If y is K -rational, this is just the restriction of Vy to Gv .

How these local representations depend on the point y ∈ Y (Kv ) is
well-understood, via the theory of period maps.
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Period maps

Theorem (Fontaine, Berger, Faltings, Tsuji, Scholze)

Let Z/Kv be smooth and proper. Then Hi
dR(Z/Kv ) carries both a

discrete (ϕ,N,Gv )-module structure and a Hodge filtration. Both of these

structures are determined by the Galois representation Hi
ét(ZK̄v

,Qp) via

the comparison isomorphism DdR(Hi
ét(ZK̄v

,Qp)) ∼= Hi
dR(Z/Kv ).

If y0 ∈ Y (Kv ) is a base point, then in a small neighbourhood Uy0 of y0,
there is a Kv -analytic period map

Φy0 : Uy0 → {filtrations on Hi
dR(Xy0/Kv )} ,

such that there is an isomorphism of filtered discrete (ϕ,N,Gv )-modules(
Hi

dR(Xy/Kv ),Hodge
) ∼= (

Hi
dR(Xy0/Kv ),Φy0(y)

)
for all y ∈ Uy0 .
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Using Galois representations to prove finiteness

Let Y (K )ss denote the set of K -rational points such that Vy is semisimple.

Lemma

Write Hy0 for the Zariski-closure of the image of the period map at y0.

i) Suppose that dimQp Aut(ϕ,N,Gv )(Hi
dR(Xy0/Kv )) < dimKv Hy0 . Then

Y (K )ss ∩ Uy0 is finite.

ii) Suppose that the above holds for all y0 ∈ Y (Kv ). Then Y (K )ss is
finite.
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Using Galois representations to prove finiteness

Lemma

i) Suppose that dimQp Aut(ϕ,N,Gv )(Hi
dR(Xy0/Kv )) < dimKv Hy0 . Then

Y (K )ss ∩ Uy0 is finite.

Proof.

For y ∈ Y (K )ss, Faltings’ Lemma implies that there are only finitely many
possibilities for the filtered discrete (ϕ,N,Gv )-module structure on
Hi

dR(Xy/Kv ). This says that Φy0(y) lies in a finite number of
Aut(ϕ,N,Gv )(Hi

dR(Xy0/Kv ))-orbits – a proper subspace of Hy0 .

This implies that there is a non-zero rational function α on Hy0 which
vanishes on all of these orbits. Thus α ◦ Φy0 is a non-zero meromorphic
function on the disc Uy0 vanishing on Y (K )ss ∩ Uy0 .
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Establishing the dimension inequality

A lower bound on dimKv Hy0 can be computed via monodromy
computations over the complex numbers.

For an upper bound on the dimension of the automorphism group:

Lemma

Suppose that Xy0 is defined over a finite extension L/K . Then

dimQp Aut(ϕ,N,Gv )(Hi
dR(Xy0/Kv )) ≤ n ·

(
dimL Hi

dR(Xy0/L)
)2
,

where n is the number of places of L over v .
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Example: abelian schemes over finite extensions

Suppose now that L/K is a finite extension, X → YL is a polarised abelian
scheme of dimension g , and i = 1. For “generic” X , we would
expect dimKv Hy0 = [L : K ] · g(g+1)

2 . On the other hand, the lemma gives

dimQp Aut(ϕ,N,Gv )(H1
dR(Xy0/Kv )) ≤ n · 4g2 .

Consequence

Suppose that X is “generic”, that [L : K ] ≥ 8, and that v does not split
in L. Then Y (K )ss is finite.

Remark: The condition that v does not split is unnecessary – it suffices
that L has a place w | v for which [Lw : Kv ] ≥ 8.

Remark: Faltings’ (hard) proof of the Tate Conjecture for abelian varieties
shows that Y (K )ss = Y (K ).
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Refinement: abelian-by-finite families

Definition

An abelian-by-finite family over Y is a sequence X → Y ′ → Y with
Y ′ → Y a finite étale covering and X → Y ′ a polarised abelian scheme.

The fibres of an abelian-by-finite family are disjoint unions of polarised
abelian varieties. The cohomology of the fibres thus has a decomposition

H1
ét(Xy ,K̄ ,Qp) ∼=

⊕
y ′∈|Y ′

y |

IndGK
GK(y′)

H1
ét(Xy ′,K̄(y ′),Qp) .
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The Kodaira–Parshin family

In the argument of Lawrence–Venkatesh, the abelian-by-finite family
X → Y ′

π−→ Y and finite place v are chosen to satisfy three technical
conditions:

A) The restriction of v to any CM subfield of K is invariant under the
conjugation.

B) The family X → Y ′ → Y has “full monodromy”.

C) For every point y ∈ Y (Kv ), the number of elements of Y ′y (K̄v )

contained in a Gv -orbit of size ≥ 8 is > d
d+1 · deg(π), where d > 0 is

the relative dimension of X → Y ′.
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The Principal Dichotomy

Theorem (Principal Dichotomy)

Let v be a p-adic place of K and X → Y ′ → Y an abelian-by-finite family
over Y . Suppose that conditions (A) and (C) are satisfied. Then for every
point y ∈ Y (K ) there is a closed point y ′ of Y ′y and a place w of
L = K (y ′) over v such that [Lw : Kv ] ≥ 8 and either:

a) the representation H1
ét(Xy ′,L̄,Qp) is simple; or

b) H1
dR(Xy ′,L̄w

,Qp) has a non-zero filtered (ϕ,N,Gw )-submodule W

such that dimLw F1W ≥ 1
2 dimLw W .
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The proof of Mordell (outline)

We need to prove finiteness of the sets Y (K )(a) and Y (K )(b) of K -rational
points satisfying (a) and (b), respectively.

For points of type (a), a dimension-count (similar to the one on an earlier
slide) shows that the image of Y (K )(a) ∩ Uy0 under the period map at
y0 ∈ Y (Kv ) is not Zariski-dense in Hy0 , and we obtain finiteness
of Y (K )(a) as before.

For points of type (b), condition (b) directly implies that the image of
Y (K )(b) ∩Uy0 is contained in a proper Zariski-closed subspace of Hy0 , and
we obtain finiteness of Y (K )(b) as before.
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Lawrence–Venkatesh for Galois sections
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Recap of the main theorem

Theorem

Let K be a number field, let Y /K be a connected smooth proper curve of
genus ≥ 2, and let v be a finite place of K satisfying condition (A). Then
the image of the localisation map

Sec(Y /K )l.g. → Y (Kv )

y 7→ yv

is finite.

The proof follows the same outline as Lawrence–Venkatesh.
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Adapting the Lawrence–Venkatesh method

To apply the Lawrence–Venkatesh method to the main theorem, we need
three main ingredients.

i) Given a smooth proper family X → Y , we need to describe a way to
assign Galois representations Vy to elements y ∈ Sec(Y /K )l.g., such
that:

Vy is unramified and pure of weight i outside a fixed finite set of places
of K ;
Vy is de Rham at places over p; and
the restriction Vy |Gv is controlled by the period map associated to
X → Y .

ii) We need to find an abelian-by-finite family X → Y ′ → Y satisfying
conditions (B) and (C) (for our given v).

iii) We need a version of the Principal Dichotomy for the Galois
representations arising from elements of Sec(Y /K )l.g..
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Associating Galois representations to sections

Let f : X → Y be a smooth proper map. The relative étale cohomology
Ri

étf∗Qp
is a Qp-local system on Y , and hence corresponds to a

representation V of the étale fundamental group πét
1 (Y ). Given a

section y of the structure map πét
1 (Y )→ GK , we may restrict the action

on V to make it a representation of GK , which we denote by Vy .
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If the section y is locally geometric, so y |Gu is the section arising from a
point yu ∈ Y (Ku) for all places u of K , then Vy |Gu

∼= Hi
ét(Xyu ,K̄u

,Qp) for
all places u.

It follows that:

Vy is unramified outside a fixed set of places of K (depending only on
X → Y ), and is pure of weight i outside that set.

Vy is de Rham at all p-adic places of K , and its restriction to Gv is
controlled by the v -adic period map; and

Thus the representations Vy are well-behaved enough to run the
Lawrence–Venkatesh argument more-or-less verbatim.
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General philosophy

Several approaches to Diophantine geometry (Lawrence–Venkatesh,
Chabauty–Kim,. . . ) revolve around assigning Galois representations to
rational points on a variety Y , by taking fibres of a local system on Y .

In this setup, we can assign Galois representations not just to rational
points, but also to Galois sections.

These methods then constrain not just the set Y (K ) ⊆ Y (Kv ), but
even the image of Sec(Y /K )l.g. → Y (Kv ).
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Example (speculative)

Let Y /Q be a connected smooth proper curve of genus ≥ 2, with a
rational point b. If p is a prime of good reduction, then the
Chabauty–Kim method gives a nested sequence of subsets

Y (Qp) ⊇ Y (Qp)1 ⊇ Y (Qp)2 ⊇ . . . ,

all containing Y (Q).

In fact, they all contain the image of Sec(Y /Q)l.g. → Y (Qp).

Consequence: We can give examples of curves Y /Q and primes p for
which the image of the map Sec(Y /Q)l.g. → Y (Qp) is exactly Y (Q).
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