Galois sections and the Lawrence-Venkatesh method

L. Alexander Betts, joint w. Jakob Stix

Harvard University betts@math harvard edu

28th October 2020

Introduction

Galois sections

Let K be a number field and Y/K a connected smooth proper curve of genus ≥ 2 . The structure map $Y \to \operatorname{Spec}(K)$ induces a map

$$\pi_1^{ ext{\'et}}(Y) o G_K$$
 (*)

on profinite étale fundamental groups.

Galois sections

Let K be a number field and Y/K a connected smooth proper curve of genus ≥ 2 . The structure map $Y \to \operatorname{Spec}(K)$ induces a map

$$\pi_1^{\text{\'et}}(Y) o G_{\mathcal{K}}$$
 (*)

on profinite étale fundamental groups. A K-rational point on Y is a splitting of the structure map, and hence induces a splitting of (*). There is thus a section map

$$Y(K) \rightarrow Sec(Y/K) := \{splittings of (*)\}.$$

Let K be a number field and Y/K a connected smooth proper curve of genus ≥ 2 . The structure map $Y \to \operatorname{Spec}(K)$ induces a map

$$\pi_1^{\text{\'et}}(Y) o G_{\mathcal{K}}$$
 (*)

on profinite étale fundamental groups. A K-rational point on Y is a splitting of the structure map, and hence induces a splitting of (*). There is thus a section map

$$Y(K) \rightarrow Sec(Y/K) := \{splittings of (*)\}.$$

Technical point: One officially has to make choices of basepoint to make sense of the above Galois and fundamental groups. All the maps between profinite groups should be taken to denote *outer* homomorphisms.

The section conjecture

Section Conjecture (Grothendieck)

The section map $Y(K) \to Sec(Y/K)$ is *bijective*.

The section conjecture

Section Conjecture (Grothendieck)

The section map $Y(K) \to Sec(Y/K)$ is bijective.

Remarks:

- The map $Y(K) \to Sec(Y/K)$ is known to be injective.
- Surjectivity is only known in a handful of cases where Sec(Y/K) can be shown to be empty.
- Grothendieck believed that a proof of the Section Conjecture would lead to a "topological" proof of the Mordell Conjecture.

The section conjecture

Section Conjecture (Grothendieck)

The section map $Y(K) \to Sec(Y/K)$ is bijective.

Remarks:

- The map $Y(K) \to Sec(Y/K)$ is known to be injective.
- Surjectivity is only known in a handful of cases where Sec(Y/K) can be shown to be empty.
- Grothendieck believed that a proof of the Section Conjecture would lead to a "topological" proof of the Mordell Conjecture.

Consequence of the Section Conjecture + Faltings' Theorem The set Sec(Y/K) is finite.

Locally geometric sections

If v is a place of K, then the structure map $Y_{K_v} o \operatorname{Spec}(K_v)$ induces a map

$$\pi_1^{\text{\'et}}(Y_{\mathcal{K}_{\nu}}) \to G_{\nu} := G_{\mathcal{K}_{\nu}}$$
 $(*_{\nu})$

on fundamental groups. Again every K_v -point of Y gives rise to a splitting of $(*_v)$ by functoriality, so we have a local section map $Y(K_v) \to \operatorname{Sec}(Y_{K_v}/K_v)$. Restriction to a decomposition group at v gives a map $\operatorname{Sec}(Y/K) \to \operatorname{Sec}(Y_{K_v}/K_v)$.

Locally geometric sections

If v is a place of K, then the structure map $Y_{K_v} o \mathsf{Spec}(K_v)$ induces a map

$$\pi_1^{\text{\'et}}(Y_{K_{\nu}}) \to G_{\nu} := G_{K_{\nu}} \tag{*_{\nu}}$$

on fundamental groups. Again every K_v -point of Y gives rise to a splitting of $(*_v)$ by functoriality, so we have a local section map $Y(K_v) \to \operatorname{Sec}(Y_{K_v}/K_v)$. Restriction to a decomposition group at v gives a map $\operatorname{Sec}(Y/K) \to \operatorname{Sec}(Y_{K_v}/K_v)$.

Definition

An element $y \in \operatorname{Sec}(Y/K)$ (section of (*)) is called *locally geometric* (or *Selmer*) just when $y|_{G_v} \in \operatorname{Sec}(Y_{K_v}/K_v)$ lies in the image of the local section map for every place v of K. We write $\operatorname{Sec}(Y/K)^{\operatorname{l.g.}}$ for the set of locally geometric sections, which contains Y(K).

The main theorem

If v is a finite place of K, then we have a localisation map $\operatorname{Sec}(Y/K)^{\operatorname{l.g.}} \to Y(K_{\nu})$ sending a locally geometric section y to the unique K_v -point y_v of Y whose associated local section is $y|_{G_v}$.

The main theorem

If v is a finite place of K, then we have a localisation map $Sec(Y/K)^{l.g.} \to Y(K_v)$ sending a locally geometric section y to the unique K_V -point y_V of Y whose associated local section is $y|_{G_V}$.

Theorem (B.–Stix, in progress)

Let K be a number field containing no CM subfield, let Y/K be a connected smooth proper curve of genus > 2, and let v be a finite place of K. Then the image of the localisation map

$$Sec(Y/K)^{l.g.} \to Y(K_v)$$

 $y \mapsto y_v$

is finite.

Aside: The finite descent obstruction

The finite descent obstruction cuts out an intermediate set

$$Y(K) \subseteq Y(\mathbb{A}_K)^{\mathrm{f-cov}}_{ullet} \subseteq Y(\mathbb{A}_K)_{ullet}.$$

It is believed that in fact $Y(K) = Y(\mathbb{A}_K)^{f-cov}$.

Aside: The finite descent obstruction

The finite descent obstruction cuts out an intermediate set

$$Y(K) \subseteq Y(\mathbb{A}_K)^{\mathrm{f-cov}}_{ullet} \subseteq Y(\mathbb{A}_K)_{ullet}.$$

It is believed that in fact $Y(K) = Y(\mathbb{A}_K)^{f-cov}_{ullet}$.

Theorem (Harari-Stix)

The image of the localisation map $Sec(Y/K)^{l.g.} \to Y(\mathbb{A}_K)_{\bullet}$ is the finite descent set $Y(\mathbb{A}_K)_{\bullet}^{f-cov}$.

Aside: The finite descent obstruction

The finite descent obstruction cuts out an intermediate set

$$Y(K) \subseteq Y(\mathbb{A}_K)^{\mathrm{f-cov}}_{ullet} \subseteq Y(\mathbb{A}_K)_{ullet}$$
.

It is believed that in fact $Y(K) = Y(\mathbb{A}_K)^{f-cov}_{\bullet}$.

Theorem (Harari–Stix)

The image of the localisation map $Sec(Y/K)^{l.g.} \to Y(\mathbb{A}_K)_{\bullet}$ is the finite descent set $Y(\mathbb{A}_K)_{\bullet}^{f-cov}$.

Rephrasing of the main theorem

In the same setup as the main theorem, the image of the projection $Y(\mathbb{A}_K)^{\mathrm{f-cov}}_{\bullet} \to Y(K_v)$ is finite for all finite places v.

The Lawrence-Venkatesh method

Introduction

The Lawrence-Venkatesh method

(without good reduction assumptions)

Associating Galois representations to points

In 2019, Lawrence and Venkatesh re-proved

Theorem (Faltings (Mordell Conjecture))

Y(K) is finite.

Associating Galois representations to points

In 2019, Lawrence and Venkatesh re-proved

Theorem (Faltings (Mordell Conjecture))

Y(K) is finite.

The main idea of the proof, present already in the first proof by Faltings, is to assign a Galois representation V_y to each rational point $y \in Y(K)$, and study these instead.

Associating Galois representations to points

In 2019, Lawrence and Venkatesh re-proved

Theorem (Faltings (Mordell Conjecture))

Y(K) is finite.

The main idea of the proof, present already in the first proof by Faltings, is to assign a Galois representation V_y to each rational point $y \in Y(K)$, and study these instead.

Let $X \to Y$ be a smooth proper map. To a point $y \in Y(K)$, we can associate the Galois representation $H^i_{\text{\'et}}(X_{y,\bar{K}},\mathbb{Q}_p)$. This representation is pure of weight i, unramified outside a fixed finite set of places of K (not depending on y).

Constraints on global representations

Lemma (Hermite–Minkowski, Faltings)

Let K be a number field and S a finite set of places of K, and $i, d \geq 0$. Then there are, up to isomorphism, only finitely many <u>semisimple</u> representations V of G_K of dimension d which are unramified and pure* of weight i outside S.

Constraints on global representations

Lemma (Hermite-Minkowski, Faltings)

Let K be a number field and S a finite set of places of K, and $i, d \ge 0$. Then there are, up to isomorphism, only finitely many <u>semisimple</u> representations V of G_K of dimension d which are unramified and pure* of weight i outside S.

Consequence: There are only finitely many possibilities for the representation V_v , if semisimple.

Constraints on global representations

Lemma (Hermite-Minkowski, Faltings)

Let K be a number field and S a finite set of places of K, and $i, d \geq 0$. Then there are, up to isomorphism, only finitely many <u>semisimple</u> representations V of G_K of dimension d which are unramified and pure* of weight i outside S.

Consequence: There are only finitely many possibilities for the representation V_{v} , if semisimple.

*: char. poly. of geometric Frobenius has *integer* coefficients and its roots are Weil numbers of weight *i*.

Variation of local representations

Suppose that v is a p-adic place of K. If we have a v-adic point $y \in Y(K_v)$, then we can assign it the local Galois representation $H^i_{\operatorname{\acute{e}t}}(X_{v,\bar{K}_v},\mathbb{Q}_p)$. If y is K-rational, this is just the restriction of V_y to G_v .

Variation of local representations

Suppose that v is a p-adic place of K. If we have a v-adic point $y \in Y(K_v)$, then we can assign it the local Galois representation $H^i_{\operatorname{\acute{e}t}}(X_{y,\bar{K}_v},\mathbb{Q}_p)$. If y is K-rational, this is just the restriction of V_y to G_v .

How these local representations depend on the point $y \in Y(K_v)$ is well-understood, via the theory of *period maps*.

Period maps

Theorem (Fontaine, Berger, Faltings, Tsuji, Scholze)

Let Z/K_{v} be smooth and proper. Then $H^{i}_{dR}(Z/K_{v})$ carries both a discrete (φ, N, G_{v}) -module structure and a Hodge filtration. Both of these structures are determined by the Galois representation $H^{i}_{\acute{\mathrm{et}}}(Z_{\bar{K}_{v}}, \mathbb{Q}_{p})$ via the comparison isomorphism $D_{\mathrm{dR}}(H^{i}_{\acute{\mathrm{et}}}(Z_{\bar{K}_{v}}, \mathbb{Q}_{p})) \cong H^{i}_{\mathrm{dR}}(Z/K_{v})$.

Period maps

Theorem (Fontaine, Berger, Faltings, Tsuji, Scholze)

Let Z/K_{ν} be smooth and proper. Then $H^{i}_{\mathrm{dR}}(Z/K_{\nu})$ carries both a discrete (φ, N, G_{ν}) -module structure and a Hodge filtration. Both of these structures are determined by the Galois representation $H^{i}_{\mathrm{\acute{e}t}}(Z_{\bar{K}_{\nu}}, \mathbb{Q}_{p})$ via the comparison isomorphism $D_{\mathrm{dR}}(H^{i}_{\mathrm{\acute{e}t}}(Z_{\bar{K}_{\nu}}, \mathbb{Q}_{p})) \cong H^{i}_{\mathrm{dR}}(Z/K_{\nu})$.

If $y_0 \in Y(K_v)$ is a base point, then in a small neighbourhood U_{y_0} of y_0 , there is a K_v -analytic *period map*

$$\Phi_{y_0} \colon U_{y_0} \to \{ \text{filtrations on } \mathsf{H}^i_{\mathrm{dR}}(X_{y_0}/K_{\nu}) \} \,,$$

such that there is an isomorphism of filtered discrete (φ, N, G_v) -modules

$$\left(\mathsf{H}^{i}_{\mathrm{dR}}(X_{\mathsf{y}}/K_{\mathsf{v}}),\mathsf{Hodge}\right)\cong\left(\mathsf{H}^{i}_{\mathrm{dR}}(X_{\mathsf{y}_{0}}/K_{\mathsf{v}}),\Phi_{\mathsf{y}_{0}}(y)\right)$$

for all $y \in U_{v_0}$.

Let $Y(K)_{ss}$ denote the set of K-rational points such that V_y is semisimple.

Let $Y(K)_{ss}$ denote the set of K-rational points such that V_y is semisimple.

Lemma

Write \mathcal{H}_{y_0} for the Zariski-closure of the image of the period map at y_0 .

- i) Suppose that $\dim_{\mathbb{Q}_p} \operatorname{Aut}_{(\varphi,N,G_v)}(\operatorname{H}^i_{\mathrm{dR}}(X_{y_0}/K_v)) < \dim_{K_v} \mathcal{H}_{y_0}$. Then $Y(K)_{\mathrm{ss}} \cap U_{y_0}$ is finite.
- ii) Suppose that the above holds for all $y_0 \in Y(K_v)$. Then $Y(K)_{ss}$ is finite.

Lemma

i) Suppose that $\dim_{\mathbb{Q}_p} \operatorname{Aut}_{(\varphi,N,G_v)}(\operatorname{H}^i_{\mathrm{dR}}(X_{y_0}/K_v)) < \dim_{K_v} \mathcal{H}_{y_0}$. Then $Y(K)_{ss} \cap U_{v_0}$ is finite.

Lemma

i) Suppose that $\dim_{\mathbb{Q}_p} \operatorname{Aut}_{(\varphi,N,G_v)}(\operatorname{H}^i_{\mathrm{dR}}(X_{y_0}/K_v)) < \dim_{K_v} \mathcal{H}_{y_0}$. Then $Y(K)_{\mathrm{ss}} \cap U_{y_0}$ is finite.

Proof.

For $y\in Y(K)_{ss}$, Faltings' Lemma implies that there are only finitely many possibilities for the filtered discrete (φ,N,G_{ν}) -module structure on $H^i_{\mathrm{dR}}(X_y/K_{\nu})$. This says that $\Phi_{y_0}(y)$ lies in a finite number of $\mathrm{Aut}_{(\varphi,N,G_{\nu})}(H^i_{\mathrm{dR}}(X_{y_0}/K_{\nu}))$ -orbits – a proper subspace of \mathcal{H}_{y_0} .

This implies that there is a non-zero rational function α on \mathcal{H}_{y_0} which vanishes on all of these orbits. Thus $\alpha \circ \Phi_{y_0}$ is a non-zero meromorphic function on the disc U_{v_0} vanishing on $Y(K)_{ss} \cap U_{v_0}$.

Establishing the dimension inequality

A lower bound on $\dim_{K_{\nu}} \mathcal{H}_{y_0}$ can be computed via monodromy computations over the complex numbers.

A lower bound on $\dim_{K_{\nu}}\mathcal{H}_{y_0}$ can be computed via monodromy computations over the complex numbers.

For an upper bound on the dimension of the automorphism group:

Lemma

Suppose that X_{y_0} is defined over a finite extension L/K. Then

$$\dim_{\mathbb{Q}_p} \operatorname{Aut}_{(\varphi,N,G_v)} (\operatorname{H}^i_{\mathrm{dR}}(X_{y_0}/K_v)) \leq n \cdot \left(\dim_L \operatorname{H}^i_{\mathrm{dR}}(X_{y_0}/L)\right)^2 \,,$$

where n is the number of places of L over v.

Example: abelian schemes over finite extensions

Suppose now that L/K is a finite extension, $X \to Y_L$ is a polarised abelian scheme of dimension g, and i=1. For "generic" X, we would expect $\dim_{K_v} \mathcal{H}_{y_0} = [L:K] \cdot \frac{g(g+1)}{2}$. On the other hand, the lemma gives

$$\dim_{\mathbb{Q}_p} \operatorname{Aut}_{(\varphi,N,G_v)}(\operatorname{H}^1_{\mathrm{dR}}(X_{y_0}/K_v)) \leq n \cdot 4g^2$$
.

Example: abelian schemes over finite extensions

Suppose now that L/K is a finite extension, $X \to Y_L$ is a polarised abelian scheme of dimension g, and i=1. For "generic" X, we would expect $\dim_{K_v} \mathcal{H}_{y_0} = [L:K] \cdot \frac{g(g+1)}{2}$. On the other hand, the lemma gives

$$\dim_{\mathbb{Q}_p} \operatorname{Aut}_{(\varphi,N,G_v)}(\operatorname{H}^1_{\mathrm{dR}}(X_{y_0}/K_v)) \leq n \cdot 4g^2$$
.

Consequence

Suppose that X is "generic", that $[L : K] \ge 8$, and that v does not split in L. Then $Y(K)_{ss}$ is finite.

Example: abelian schemes over finite extensions

Suppose now that L/K is a finite extension, $X \to Y_L$ is a polarised abelian scheme of dimension g, and i=1. For "generic" X, we would expect $\dim_{K_v} \mathcal{H}_{y_0} = [L:K] \cdot \frac{g(g+1)}{2}$. On the other hand, the lemma gives

$$\dim_{\mathbb{Q}_p} \operatorname{Aut}_{(\varphi,N,G_v)}(\operatorname{H}^1_{\mathrm{dR}}(X_{y_0}/K_v)) \leq n \cdot 4g^2 \,.$$

Consequence

Suppose that X is "generic", that $[L : K] \ge 8$, and that v does not split in L. Then $Y(K)_{ss}$ is finite.

Remark: The condition that v does not split is unnecessary – it suffices that L has a place $w \mid v$ for which $[L_w : K_v] \ge 8$.

Example: abelian schemes over finite extensions

Suppose now that L/K is a finite extension, $X \to Y_L$ is a polarised abelian scheme of dimension g, and i=1. For "generic" X, we would expect $\dim_{K_v} \mathcal{H}_{y_0} = [L:K] \cdot \frac{g(g+1)}{2}$. On the other hand, the lemma gives

$$\dim_{\mathbb{Q}_p} \operatorname{Aut}_{(\varphi,N,G_v)}(\operatorname{H}^1_{\mathrm{dR}}(X_{y_0}/K_v)) \leq n \cdot 4g^2$$
.

Consequence

Suppose that X is "generic", that $[L:K] \ge 8$, and that v does not split in L. Then $Y(K)_{ss}$ is finite.

Remark: The condition that v does not split is unnecessary – it suffices that L has a place $w \mid v$ for which $[L_w : K_v] \ge 8$.

Remark: Faltings' (hard) proof of the Tate Conjecture for abelian varieties shows that $Y(K)_{ss} = Y(K)$.

Refinement: abelian-by-finite families

Definition

An abelian-by-finite family over Y is a sequence $X \to Y' \to Y$ with $Y' \to Y$ a finite étale covering and $X \to Y'$ a polarised abelian scheme.

Refinement: abelian-by-finite families

Definition

An abelian-by-finite family over Y is a sequence $X \to Y' \to Y$ with $Y' \to Y$ a finite étale covering and $X \to Y'$ a polarised abelian scheme.

The fibres of an abelian-by-finite family are disjoint unions of polarised abelian varieties. The cohomology of the fibres thus has a decomposition

$$\mathsf{H}^1_{\mathrm{\acute{e}t}}(X_{y,\bar{K}},\mathbb{Q}_p) \cong \bigoplus_{y' \in |Y'_v|} \mathsf{Ind}_{G_{K(y')}}^{G_K} \mathsf{H}^1_{\mathrm{\acute{e}t}}(X_{y',\bar{K}(y')},\mathbb{Q}_p) \,.$$

The Kodaira-Parshin family

In the argument of Lawrence-Venkatesh, the abelian-by-finite family $X \to Y' \xrightarrow{\pi} Y$ and finite place v are chosen to satisfy three technical conditions:

The Kodaira-Parshin family

In the argument of Lawrence–Venkatesh, the abelian-by-finite family $X \to Y' \xrightarrow{\pi} Y$ and finite place v are chosen to satisfy three technical conditions:

- A) The restriction of v to any CM subfield of K is invariant under the conjugation.
- B) The family $X \to Y' \to Y$ has "full monodromy".
- C) For every point $y \in Y(K_v)$, the number of elements of $Y'_y(\bar{K}_v)$ contained in a G_v -orbit of size ≥ 8 is $> \frac{d}{d+1} \cdot \deg(\pi)$, where d > 0 is the relative dimension of $X \to Y'$.

The Principal Dichotomy

Theorem (Principal Dichotomy)

Let v be a p-adic place of K and $X \to Y' \to Y$ an abelian-by-finite family over Y. Suppose that conditions (A) and (C) are satisfied. Then for every point $y \in Y(K)$ there is a closed point y' of Y'_y and a place w of L = K(y') over v such that $[L_w : K_v] \ge 8$ and either:

- a) the representation $H^1_{\text{\'et}}(X_{v',\bar{L}},\mathbb{Q}_p)$ is simple; or
- b) $\mathrm{H}^1_{\mathrm{dR}}(X_{y',\bar{L}_w},\mathbb{Q}_p)$ has a non-zero filtered (φ,N,G_w) -submodule W such that $\dim_{L_w}\mathrm{F}^1W\geq \frac{1}{2}\dim_{L_w}W$.

The proof of Mordell (outline)

We need to prove finiteness of the sets $Y(K)_{(a)}$ and $Y(K)_{(b)}$ of K-rational points satisfying (a) and (b), respectively.

The proof of Mordell (outline)

We need to prove finiteness of the sets $Y(K)_{(a)}$ and $Y(K)_{(b)}$ of K-rational points satisfying (a) and (b), respectively.

For points of type (a), a dimension-count (similar to the one on an earlier slide) shows that the image of $Y(K)_{(a)} \cap U_{y_0}$ under the period map at $y_0 \in Y(K_v)$ is not Zariski-dense in \mathcal{H}_{y_0} , and we obtain finiteness of $Y(K)_{(a)}$ as before.

The proof of Mordell (outline)

We need to prove finiteness of the sets $Y(K)_{(a)}$ and $Y(K)_{(b)}$ of K-rational points satisfying (a) and (b), respectively.

For points of type (a), a dimension-count (similar to the one on an earlier slide) shows that the image of $Y(K)_{(a)} \cap U_{y_0}$ under the period map at $y_0 \in Y(K_v)$ is not Zariski-dense in \mathcal{H}_{y_0} , and we obtain finiteness of $Y(K)_{(a)}$ as before.

For points of type (b), condition (b) directly implies that the image of $Y(K)_{(b)} \cap U_{y_0}$ is contained in a proper Zariski-closed subspace of \mathcal{H}_{y_0} , and we obtain finiteness of $Y(K)_{(b)}$ as before.

Recap of the main theorem

Theorem

Let K be a number field, let Y/K be a connected smooth proper curve of genus ≥ 2 , and let v be a finite place of K satisfying condition (A). Then the image of the localisation map

$$Sec(Y/K)^{l.g.} \to Y(K_v)$$

 $y \mapsto y_v$

is finite.

Recap of the main theorem

Theorem

Let K be a number field, let Y/K be a connected smooth proper curve of genus ≥ 2 , and let v be a finite place of K satisfying condition (A). Then the image of the localisation map

$$\mathsf{Sec}(Y/K)^{\mathrm{l.g.}} o Y(K_{v})$$

 $y \mapsto y_{v}$

is finite.

The proof follows the same outline as Lawrence-Venkatesh.

- i) Given a smooth proper family $X \to Y$, we need to describe a way to assign Galois representations V_y to elements $y \in \text{Sec}(Y/K)^{\text{l.g.}}$, such that:
 - V_y is unramified and pure of weight i outside a fixed finite set of places
 of K;
 - V_y is de Rham at places over p; and
 - the restriction $V_{\scriptscriptstyle \mathcal{Y}}|_{\mathcal{G}_{\scriptscriptstyle \mathcal{V}}}$ is controlled by the period map associated to $X \to Y$.

- i) Given a smooth proper family $X \to Y$, we need to describe a way to assign Galois representations V_y to elements $y \in \text{Sec}(Y/K)^{\text{l.g.}}$, such that:
 - V_y is unramified and pure of weight i outside a fixed finite set of places
 of K;
 - V_y is de Rham at places over p; and
 - the restriction $V_y|_{G_v}$ is controlled by the period map associated to $X \to Y$.
- ii) We need to find an abelian-by-finite family $X \to Y' \to Y$ satisfying conditions (B) and (C) (for our given v).

- i) Given a smooth proper family $X \to Y$, we need to describe a way to assign Galois representations V_y to elements $y \in \text{Sec}(Y/K)^{\text{l.g.}}$, such that:
 - V_y is unramified and pure of weight i outside a fixed finite set of places
 of K;
 - V_y is de Rham at places over p; and
 - the restriction $V_y|_{G_v}$ is controlled by the period map associated to $X \to Y$.
- ii) We need to find an abelian-by-finite family $X \to Y' \to Y$ satisfying conditions (B) and (C) (for our given ν).
- iii) We need a version of the Principal Dichotomy for the Galois representations arising from elements of $\mathrm{Sec}(Y/K)^{\mathrm{l.g.}}$.

Associating Galois representations to sections

Let $f\colon X\to Y$ be a smooth proper map. The relative étale cohomology $\mathrm{R}_{\mathrm{\acute{e}t}}^if_*\underline{\mathbb{Q}}_p$ is a \mathbb{Q}_p -local system on Y, and hence corresponds to a representation V of the étale fundamental group $\pi_1^{\mathrm{\acute{e}t}}(Y)$. Given a section y of the structure map $\pi_1^{\mathrm{\acute{e}t}}(Y)\to G_K$, we may restrict the action on V to make it a representation of G_K , which we denote by V_V .

If the section y is locally geometric, so $y|_{G_{ij}}$ is the section arising from a point $y_u \in Y(K_u)$ for all places u of K, then $V_y|_{G_u} \cong H^i_{\text{\'et}}(X_{V_u,\bar{K}_u},\mathbb{Q}_p)$ for all places u.

If the section y is locally geometric, so $y|_{G_u}$ is the section arising from a point $y_u \in Y(K_u)$ for all places u of K, then $V_y|_{G_u} \cong H^i_{\mathrm{\acute{e}t}}(X_{y_u,\bar{K}_u},\mathbb{Q}_p)$ for all places u. It follows that:

- V_y is unramified outside a fixed set of places of K (depending only on $X \to Y$), and is pure of weight i outside that set.
- V_y is de Rham at all p-adic places of K, and its restriction to G_v is controlled by the v-adic period map; and

If the section y is locally geometric, so $y|_{G_u}$ is the section arising from a point $y_u \in Y(K_u)$ for all places u of K, then $V_y|_{G_u} \cong H^i_{\mathrm{\acute{e}t}}(X_{y_u,\bar{K}_u},\mathbb{Q}_p)$ for all places u. It follows that:

- V_y is unramified outside a fixed set of places of K (depending only on $X \to Y$), and is pure of weight i outside that set.
- V_y is de Rham at all p-adic places of K, and its restriction to G_v is controlled by the v-adic period map; and

Thus the representations V_y are well-behaved enough to run the Lawrence–Venkatesh argument more-or-less verbatim.

General philosophy

 Several approaches to Diophantine geometry (Lawrence-Venkatesh, Chabauty-Kim,...) revolve around assigning Galois representations to rational points on a variety Y, by taking fibres of a local system on Y.

General philosophy

- Several approaches to Diophantine geometry (Lawrence-Venkatesh, Chabauty-Kim,...) revolve around assigning Galois representations to rational points on a variety Y, by taking fibres of a local system on Y.
- In this setup, we can assign Galois representations not just to rational points, but also to Galois sections.

General philosophy

- Several approaches to Diophantine geometry (Lawrence-Venkatesh, Chabauty-Kim,...) revolve around assigning Galois representations to rational points on a variety Y, by taking fibres of a local system on Y.
- In this setup, we can assign Galois representations not just to rational points, but also to Galois sections.
- These methods then constrain not just the set $Y(K) \subseteq Y(K_v)$, but even the image of $Sec(Y/K)^{l.g.} \to Y(K_v)$.

Example (speculative)

Let Y/\mathbb{Q} be a connected smooth proper curve of genus ≥ 2 , with a rational point b. If p is a prime of good reduction, then the Chabauty–Kim method gives a nested sequence of subsets

$$Y(\mathbb{Q}_p) \supseteq Y(\mathbb{Q}_p)_1 \supseteq Y(\mathbb{Q}_p)_2 \supseteq \ldots,$$

all containing $Y(\mathbb{Q})$.

Let Y/\mathbb{Q} be a connected smooth proper curve of genus ≥ 2 , with a rational point b. If p is a prime of good reduction, then the Chabauty–Kim method gives a nested sequence of subsets

$$Y(\mathbb{Q}_p) \supseteq Y(\mathbb{Q}_p)_1 \supseteq Y(\mathbb{Q}_p)_2 \supseteq \ldots,$$

all containing $Y(\mathbb{Q})$.

In fact, they all contain the image of $\operatorname{\mathsf{Sec}}(Y/\mathbb{Q})^{\operatorname{l.g.}} o Y(\mathbb{Q}_p).$

Example (speculative)

Let Y/\mathbb{Q} be a connected smooth proper curve of genus ≥ 2 , with a rational point b. If p is a prime of good reduction, then the Chabauty–Kim method gives a nested sequence of subsets

$$Y(\mathbb{Q}_p) \supseteq Y(\mathbb{Q}_p)_1 \supseteq Y(\mathbb{Q}_p)_2 \supseteq \ldots,$$

all containing $Y(\mathbb{Q})$.

In fact, they all contain the image of $\operatorname{Sec}(Y/\mathbb{Q})^{\operatorname{l.g.}} o Y(\mathbb{Q}_p).$

Consequence: We can give examples of curves Y/\mathbb{Q} and primes p for which the image of the map $Sec(Y/\mathbb{Q})^{l.g.} \to Y(\mathbb{Q}_p)$ is exactly $Y(\mathbb{Q})$.