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Introduction



Motivation: an anabelian theory of heights

Anabelian geometry is, loosely speaking, the attempt to study
aspects of Diophantine geometry using fundamental groups.

The fundamental groups in question are typically highly structured
objects, for instance if X is a connected variety over a field F and
x ∈ X (F ) is a rational basepoint, then the étale fundamental
group πét

1 (X ; x) is a profinite group endowed with a continuous
action of the absolute Galois group GF .

Other types of fundamental group can also be used, e.g.
Qp-pro-unipotent, de Rham or (log-)crystalline fundamental
groups, which carry other kinds of structure.

The principal method of studying rational points is via various
non-abelian Kummer maps, for example the map

X (F )→ H1(GF , π
ét
1 (X ; x))

assigning to an F -rational point y ∈ X (F ) the class of the étale
torsor of paths πét

1 (X ; x , y).

When F is a number field and X a curve of genus ≥ 2, one of the
implications of Grothendieck’s section conjecture is that the étale
Kummer map should be bijective—it is known to be injective.

Even in the absence of the section conjecture, interesting results
can be obtained from consideration of non-abelian Kummer maps,
for instance M. Kim’s anabelian proof of Siegel’s theorem (using
the Qp-pro-unipotent fundamental group).



Motivating question (preliminary version)

Let A/F be an abelian variety over a number field, L/A a line
bundle and y ∈ A(F ) a rational point. Can we recover the
canonical height ĥL(y) from anabelian data associated to L?
Can we do so explicitly?

As the canonical height decomposes as a sum of local components,
it makes sense to turn this into a purely local question.

Notation
Fix (for the rest of the talk) a prime p, a finite extension K/Qp,
and an algebraic closure K/K , determining an absolute Galois
group GK .

Recall that for any divisor D on an abelian variety A/K , there is a
Néron function A(K ) \ D(K )→ R, which is the unique (up to
scaling) function satisfying a certain list of properties. It can be
normalised to take values in Q, and is used as the local component
of height functions.

Equivalently, for any line bundle L/A, there is a Néron log-metric
L×(K ) = (L \ {0})(K )→ R, which again is uniquely (up to
additive constants) determined by a certain list of properties.



Motivating question (definitive version)

Let A/K be an abelian variety, L/A a line bundle and U/Qp the
Qp-unipotent fundamental group of L× = L \ {0}. Can we recover
the Néron log-metric L×(K )→ Q from the non-abelian Kummer
map

L×(K )→ H1(GK ,U(Qp))?

Can we do so explicitly?

An example result

An example of the sort of result we seek (for the Q`-unipotent
fundamental group) already appears in existing work.

Theorem (Balakrishnan, Dan-Cohen, Kim, Wewers. 2014)

Let X/K be the complement of 0 in an elliptic curve E/K , and U2

the 2-step Q`-unipotent fundamental group (` 6= p) of X . Then
the natural map Q`(1)→ U2 induces a bijection on H1, and the
composite map

X (K )→ H1(GK ,U2(Q`))
∼← H1(GK ,Q`(1))

∼→ Q`

is a Q-valued Néron function on E with divisor [0], postcomposed
with the natural embedding Q ↪→ Q`.



Local (abelian) Bloch–Kato Selmer groups

I S. Bloch and K. Kato define, for any de Rham representation
V of GK on a Qp-vector space, subspaces

H1
e(GK ,V ) ≤ H1

f (GK ,V ) ≤ H1
g (GK ,V )

of the Galois cohomology H1(GK ,V ).

I Their dimensions are easily computable, and H1
e(GK ,V ) can

be studied via an “exponential” exact sequence

0→ V GK → Dϕ=1
cris (V )→ DdR(V )/D+

dR(V )→ H1
e(GK ,V )→ 0.

I When V = VpA is the Qp Tate module of an abelian variety
A/K , these are all equal to the Qp-span of the image of the
Kummer map

A(K )→ H1(GK ,VpA).

Local non-abelian Bloch–Kato Selmer sets

I M. Kim defines, for a unipotent group U/Qp with GK -action
(satisfying certain conditions), a pointed subset
H1

f (GK ,U(Qp)) of H1(GK ,U(Qp)), which is even the
Qp-points of a scheme H1

f (GK ,U)/Qp.

I It can be studied via an “exponential” isomorphism

D+
dR(U)\DdR(U)

∼→ H1
f (GK ,U).

I When U = Un is the n-step Qp-unipotent fundamental group
of P1

K \ {0, 1,∞}, H1
f (GK ,U(Qp)) is the Zariski closure of the

image of the non-abelian Kummer map

P1 \ {0, 1,∞}(OK )→ H1(GK ,Un(Qp)).



Content of this talk

I In this talk we will recall the definition, for a de Rham
representation of GK on a unipotent group U/Qp, of pointed
subsets H1

e(GK ,U(Qp)) ⊆ H1
f (GK ,U(Qp)) ⊆ H1

g (GK ,U(Qp))
of H1(GK ,U(Qp)).

I We will also make sense of the relative quotients of the local
Bloch–Kato Selmer sets, e.g. H1

g/e = H1
g/H

1
e .

I We will develop homotopical-algebraic techniques for studying
these local Bloch–Kato Selmer sets. These will, for instance,
provide us with an “exponential” exact sequence for
H1

e(GK ,U(Qp)), and give related results for H1
f (GK ,U(Qp))

and H1
g (GK ,U(Qp)).

The main theorem

Assuming suitably general comparison theorems for fundamental
groupoids, we can completely answer the motivating question.

Theorem (B.)

Let A/K be an abelian variety, L×/A the complement of zero in a
line bundle L, and let U be the Qp-unipotent fundamental group of
L×. Then U is de Rham, the natural map Qp(1)→ U induces a
bijection on H1

g/e , and the composite map

L×(K )→ H1
g/e(GK ,U(Qp))

∼← H1
g/e(GK ,Qp(1))

∼→ Qp

is (well-defined and) the Néron log-metric on L. Proof later



Archimedean analogue

Theorem (B.)

Let A/C be an abelian variety, L×/A the complement of zero in a
line bundle L, and let U = R⊗ π1(L×(C)) be the R-unipotent
fundamental group of L×, endowed with its R-mixed Hodge
structure. Then the natural map R(1)→ U induces a bijection on
H1, and the composite map

L×(C)→ H1(U)
∼← H1(R(1))

∼→ R

is the Néron log-metric on L.
Here H1(U) denotes the set of isomorphism classes of U-torsors
with compatible R-mixed Hodge structure.

Basic concepts



Galois representations on unipotent groups

Definition (Galois representations on unipotent groups)

A representation of GK on a unipotent group U/Qp is an action of
GK on U (by algebraic automorphisms) such that the action on
U(Qp) is continuous.
We say that U is de Rham (resp. semistable, crystalline etc.) just
when the following equivalent conditions hold:

I Lie(U) is de Rham;

I O(U) is ind-de Rham;

I dimK (DdR(U)) = dimQp(U), where DdR(U)/K is the
unipotent group representing the functor

DdR(U)(A) := U(A⊗K BdR)GK .

Definition (Local non-abelian Bloch–Kato Selmer sets)

Let U/Qp be a de Rham representation of GK on a unipotent
group. We define pointed subsets

H1
e(GK ,U(Qp)) ⊆ H1

f (GK ,U(Qp)) ⊆ H1
g (GK ,U(Qp))

of the non-abelian cohomology H1(GK ,U(Qp)) to be the kernels

H1
e(GK ,U(Qp)) := ker

(
H1(GK ,U(Qp))→ H1(GK ,U(Bϕ=1

cris ))
)

;

H1
f (GK ,U(Qp)) := ker

(
H1(GK ,U(Qp))→ H1(GK ,U(Bcris))

)
;

H1
g (GK ,U(Qp)) := ker

(
H1(GK ,U(Qp))→ H1(GK ,U(Bst))

)
.

One can use BdR in place of Bst in the definition of H1
g .



Definition (Quotients of Bloch–Kato Selmer sets)

Let U/Qp be a de Rham representation of GK on a unipotent
group. We denote by ∼H1

e
, ∼H1

f
, ∼H1

g
the equivalence relations on

H1(GK ,U(Qp)) whose equivalence classes are the fibres of

H1(GK ,U(Qp))→ H1(GK ,U(Bϕ=1
cris ));

H1(GK ,U(Qp))→ H1(GK ,U(Bcris));

H1(GK ,U(Qp))→ H1(GK ,U(Bst)).

We then define, for instance, the Bloch–Kato quotient

H1
g/e(GK ,U(Qp)) := H1

g (GK ,U(Qp))/ ∼H1
e
.

Why a cosimplicial approach?

The abelian Bloch–Kato exponential for a de Rham representation
V arises from tensoring it with the exact sequence

0→ Qp → Bϕ=1
cris → BdR/B+

dR → 0

and taking the long exact sequence in Galois cohomology.
Equivalently, if we consider the cochain complex

C•
e : Bϕ=1

cris → BdR/B+
dR

(which is a resolution of Qp), then the cohomology groups of the
cochain (C•

e ⊗Qp V )GK are canonically identified as

Hj
(

(C•
e ⊗Qp V )GK

)
∼=


V GK j = 0;

H1
e(GK ,V ) j = 1;

0 j ≥ 2.



The advantage of using cochain complexes is that we can perform
analogous constructions for H1

f and H1
g . For instance, taking the

cochain complex

C•
g : Bst → B⊕2

st ⊕ BdR/B+
dR → Bst

(which is also a resolution of Qp), the cohomology groups of
(C•

g ⊗Qp V )GK are canonically identified as

Hj
(

(C•
g ⊗Qp V )GK

)
∼=


V GK j = 0;

H1
g (GK ,V ) j = 1;

Dϕ=1
cris (V ∗(1))∗ j = 2;

0 j ≥ 3.

The cochain complexes C•
e , C•

f , C•
g themselves cannot be directly

be used in the non-abelian setting (as we cannot tensor a group by
a vector space), so we have to tweak them slightly to find a
non-abelian generalisation of the Bloch–Kato exponential.

For example, in place of C•
e , we consider the diagram

Bϕ=1
cris × B+

dR ⇒ BdR

of Qp-algebras. Taking points in U and then GK -fixed points, we
then obtain the diagram

Dϕ=1
cris (U)(K0)× D+

dR(U)(K )⇒ DdR(U)(K ).

By considering the action of Dϕ=1
cris (U)(K0)× D+

dR(U)(K ) on
DdR(U)(K ) by (x , y) : z 7→ y−1zx , we arrive at a non-abelian
analogue of the Bloch–Kato exponential.



The non-abelian Bloch–Kato exponential (explicit version)

Theorem (B.)

Let U/Qp be a de Rham representation of GK on a unipotent

group. Then the action of Dϕ=1
cris (U)(K0)× D+

dR(U)(K ) on
DdR(U)(K ) by (x , y) : z 7→ y−1zx has orbit space H1

e(GK ,U(Qp))
and point-stabiliser U(Qp)GK .

In particular, we canonically identify H1
e(GK ,U(Qp)) with the

double-coset space

D+
dR(U)(K )\DdR(U)(K )/Dϕ=1

cris (U)(K0).

Proof later

Remark
When Dϕ=1

cris (U) = 1 (as in Kim’s and Sakugawa’s work), we obtain

H1
f (GK ,U(Qp)) = H1

e(GK ,U(Qp)) ∼= D+
dR(U)(K )\DdR(U)(K ),

which recovers their descriptions of H1
f (GK ,U(Qp)).



Non-abelian analogy

In order to extend the study of local Bloch–Kato Selmer groups to
the non-abelian context, we need to replace three abelian concepts
with non-abelian analogues.

I In place of the cochain complexes C•
∗ of GK -representations,

we will use cosimplicial Qp-algebras B•
∗ with GK -action.

I In place of the cochain complexes (C•
∗ ⊗Qp V )GK , we will

examine the cosimplicial groups U(B•
∗)GK .

I In place of the cohomology groups of these cochain
complexes, we will calculate the cohomotopy groups/sets of
the corresponding cosimplicial groups.

Cosimplicial groups

Definition (Cosimplicial objects)

A cosimplicial object of a category C is a covariant functor
X • : ∆→ C from the simplex category ∆ of non-empty finite
ordinals and order-preserving maps. We think of this as a
collection of objects X n together with coface maps d•

X 0 ⇒ X 1 →→→ X 2 · · ·

and codegeneracy maps s•

X 0 ← X 1 ⇔ X 2 · · ·

satisfying certain identities.



Remark
Cosimplicial groups are a non-abelian generalisation of cochain
complexes of abelian groups. Specifically, the category of
coconnected cochain complexes is equivalent to the category of
abelian cosimplicial groups (by the cosimplicial Dold–Kan
correspondence).

We seek an invariant for cosimplicial groups generalising
cohomology of cochain complexes.

Definition (Cohomotopy groups/sets)

Let U• be a cosimplicial group

U0 ⇒ U1 →→→ U2 · · · .

We define the 0th cohomotopy group π0(U•) to be

π0 (U•) := {u0 ∈ U0 | d0(u0) = d1(u0)} ≤ U0.

We also define the pointed set of 1-cocycles to be

Z1(U•) := {u1 ∈ U1 | d1(u1) = d2(u1)d0(u1)} ⊆ U1

and the 1st cohomotopy (pointed) set π1(U•) := Z1(U•)/U0 to be
the quotient of Z1(U•) by the twisted conjugation action of U0,
given by u0 : u1 7→ d1(u0)−1u1d0(u0).



Definition (Cohomotopy groups/sets (cont.))

When U• is abelian, π0(U•) and π1(U•) are abelian groups, and
we can define the higher cohomotopy groups πj(U•) to be the
cohomology groups of the cochain complex

U0 → U1 → U2 · · ·

with differential
∑

k(−1)kdk .

In this way, cohomotopy of cosimplicial groups generalises
cohomology of cochain complexes.

Example (Non-abelian group cohomology)

Suppose G is a topological group acting continuously on another
topological group U. Then Cn(G ,U) := Mapcts(G

n,U) can be
given the structure of a cosimplicial group. Its cohomotopy
πj (C•(G ,U)) is canonically identified with the group cohomology
Hj(G ,U) for j = 0, 1, and for all j when U is abelian.



Long exact sequences in cohomotopy

Notation
When we assert that a sequence

· · · → U r−1 → U r y→ U r+1 → U r+2 → · · ·

is exact, we shall mean that:

I · · · → U r−1 → U r is an exact sequence of groups (and group
homomorphisms);

I U r+1 → U r+2 → · · · is an exact sequence of pointed sets;

I there is an action of U r on U r+1 whose orbits are the fibres of
U r+1 → U r+2, and whose point-stabiliser is the image of
U r−1 → U r .

Cosimplicial groups give us many ways of producing long exact
sequences of groups and pointed sets. For example:

Theorem (Bousfield, Kan. 1972)

Let
1→ Z • → U• → Q• → 1

be a central extension of cosimplicial groups. Then there is a
cohomotopy exact sequence

1 π0(Z •) π0(U•) π0(Q•)

π1(Z •) π1(U•) π1(Q•) π2(Z •).y



Cosimplicial Bloch–Kato theory

Methodology

Our general method for studying local Bloch–Kato Selmer sets and
their quotients will be to define various cosimplicial Qp-algebras
B•
e , B•

f , B•
g , B•

g/e , B•
f /e with GK -action such that, for any de Rham

representation of GK on a unipotent group U/Qp, we have a
canonical identification

π1
(
U(B•

∗)GK

)
∼= H1

∗(GK ,U(Qp)).



Cohomotopy of the cosimplicial Dieudonné functors

In fact, we can give a complete description of the cohomotopy
groups/sets of each U(B•

∗)GK . For instance, we have

πj
(
U(B•

e)GK

)
∼=


U(Qp)GK j = 0;

H1
e(GK ,U(Qp)) j = 1;

0 j ≥ 2 and U abelian;

πj
(
U(B•

g/e)GK

)
∼=


Dϕ=1

cris (U)(K0) j = 0;

H1
g/e(GK ,U(Qp)) j = 1;

Dϕ=1
cris (U(Qp)∗(1))∗ j = 2 and U abelian;

0 j ≥ 3 and U abelian.

Construction of Bloch–Kato algebras

The cosimplicial algebras required to make this work are all built
from standard period rings. For example, the diagram

Bϕ=1
cris × B+

dR ⇒ BdR

(which we saw earlier) is a semi-cosimplicial Qp-algebra (that is, a
cosimplicial algebra without codegeneracy maps). B•

e is then the
universal cosimplicial Qp-algebra mapping to this semi-cosimplicial
algebra (the cosimplicial algebra cogenerated by it). Concretely,
this has terms

Bn
e = Bϕ=1

cris × B+
dR × Bn

dR.



The non-abelian Bloch–Kato exponential

The description of the cohomotopy of U(B•
e)GK in degrees 0 and 1

is equivalent to our earlier explicit statement of the non-abelian
Bloch–Kato exponential, which is in turn equivalent to the
existence of a non-abelian exponential exact sequence

1 U(Qp)GK Dϕ=1
cris (U)(K0)× D+

dR(U)(K )

DdR(U)(K ) H1
e(GK ,U(Qp)) 1.

y

exp

This is what we will prove.

Construction of the non-abelian Bloch–Kato exponential

By induction along the central series of U, we see quickly that
π0 (U(B•

e)) = U(Qp) and π1 (U(B•
e)) = 1. Unpacking the

definition of B•
e , this says that

1→ U(Qp)→ U(Bϕ=1
cris )× U(B+

dR)
y→ U(BdR)→ 1

is exact (i.e. the action is transitive with point-stabiliser U(Qp)).
We then obtain a long exact sequence in Galois cohomology

1 U(Qp)GK Dϕ=1
cris (U)(K0)× D+

dR(U)(K )

DdR(U)(K ) H1(GK ,U(Qp)) H1(GK ,U(Bϕ=1
cris )× U(B+

dR)),

y

exp

which is already most of the desired exponential sequence.



Construction of the non-abelian Bloch–Kato exponential
(cont.)

It remains to show that the image of exp is exactly H1
e(GK ,U(Qp)).

The exact sequence shows that the image is exactly the kernel of

H1(GK ,U(Qp))→ H1(GK ,U(Bϕ=1
cris ))×H1(GK ,U(B+

dR)),

which certainly is contained in H1
e(GK ,U(Qp)).

It is then not too hard to prove that in fact the kernel is exactly
H1

e(GK ,U(Qp)), using the fact that the map

H1(GK ,U(B+
dR))→ H1(GK ,U(BdR))

has trivial kernel (we omit the diagram-chase in the interests of
brevity). This establishes the desired exact sequence, and hence
the description of the cohomotopy of U(B•

e)GK .

Proof of the main theorem

In order to prove our main theorem, we need a simple preparatory
lemma, and a comparison theorem (currently unproven/uncited).



Lemma
Let

1→ Z → U → Q → 1

be a central extension of de Rham representations of GK on
unipotent groups over Qp. Then there is an exact sequence

1 Dϕ=1
cris (Z )(K0) Dϕ=1

cris (U)(K0) Dϕ=1
cris (Q)(K0)

H1
g/e(GK ,Z (Qp)) H1

g/e(GK ,U(Qp)) H1
g/e(GK ,Q(Qp))

Dϕ=1
cris (Z (Qp)∗(1))∗.

y

Proof of lemma.
From the construction of B•

g/e (out of Bst), it follows that

1→ Z (B•
g/e)GK → U(B•

g/e)GK → Q(B•
g/e)GK → 1

is a central extension of cosimplicial groups. The desired exact
sequence is then the cohomotopy exact sequence for these
cosimplicial groups.



π1 comparison (conjecture)

Let X be a (semistable) OK -scheme, endowed with the log
structure induced from a normal crossings divisor D containing the
special fibre Xs , and suppose that X → Spec(OK ) is proper and
log-smooth, where Spec(OK ) is endowed with the log structure
induced from the special point. Let x , y ∈ X (OK ) be sections of
X → Spec(OK ) compatible with the log structures.

Then there are isomorphisms

BdR ⊗Qp U
Qp

2 (Xη; xη, yη)
∼→ BdR ⊗K UdR

2 (Xη; xη, yη)

Bst ⊗Qp U
Qp

2 (Xη; xη, yη)
∼→ Bst ⊗K0 U

cris
2 (Xs/K0; xs , ys)

relating the Qp-unipotent, de Rham and log-crystalline
path-torsors at depth 2, respecting all structures (Galois action,
Hodge filtration, Frobenius, monodromy).

(Conditional) proof of the main theorem cf. earlier statement

It follows (e.g. from comparison with Betti fundamental groups)
that U is a central extension

1→ Qp(1)→ U → VpA→ 1.

By the étale-de Rham comparison theorem, U (and VpA and
Qp(1)) are de Rham, so we have an exact sequence

Dϕ=1
cris (VpA)→ H1

g/e(GK ,Qp(1))
y→ H1

g/e(GK ,U(Qp))→ H1
g/e(GK ,VpA).

But the outer terms vanish (e.g. by p-adic weight-monodromy for
abelian varieties), so H1

g/e(GK ,Qp(1))→ H1
g/e(GK ,U(Qp)) is

bijective.



(Conditional) proof of the main theorem (cont.)

It also follows from the étale-de Rham comparison theorem that
the non-abelian Kummer map

L×(K )→ H1(GK ,U(Qp))

has image contained in H1
g , and hence that the composite

λ : L×(K )→ H1
g/e(GK ,U(Qp))

∼← H1
g/e(GK ,Qp(1))

∼→ Qp

is well-defined.

To show this map is the Néron log-metric, it remains to show that
it satisfies a certain list of properties. These are mostly completely
formal, with the exception of local constancy, which requires
comparison with log-crystalline path-torsors.

Questions or comments?
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