Problem Set 2: Pro-categories, descending central series and unipotent groups

1. Consider a sequence of objects

$$\cdots \to X_3 \to X_2 \to X_1$$

in a category \mathcal{C} . Let X= " $\varprojlim_{i\in\mathbb{N}}$ " X_i be the object of pro- \mathcal{C} determined by this sequence, and let X'= " $\varprojlim_{j\in\mathbb{N}}$ " X_{2j} be the object of pro- \mathcal{C} determined by taking every other term of the sequence. Show that X and X' are isomorphic as objects of pro- \mathcal{C} .

- 2. Let \mathcal{C} be the category of finite sets. Show that the pro-category pro- \mathcal{C} is equivalent to the category of compact, Hausdorff, totally disconnected topological spaces.
- 3. Let \hat{F}_2 denote the free profinite group on two generators x, y (i.e. for any profinite group G and any elements $a, b \in G$, there is a unique continuous group homomorphism $f \colon \hat{F}_2 \to G$ such that f(x) = a and f(y) = b). Let $\Gamma^{\bullet}\hat{F}_2$ be the descending central series. Show that

$$\bigcap_{n} \Gamma^{n} \hat{F}_{2} \neq 1$$

is not the trivial subgroup.

- 4. Let $\mathfrak u$ be a finite-dimensional nilpotent Lie algebra (over a characteristic 0 field, as always) of class 3, i.e. $\Gamma^4\mathfrak u=0$. Let $(-)\bullet(-)$ denote the Baker–Campbell–Hausdorff group law on $\mathfrak u$. For $u,v\in\mathfrak u$ give a formula for the group commutator $u\bullet v\bullet u^{-1}\bullet v^{-1}$ in terms of the Lie bracket. Show that u and v commute for the Baker–Campbell–Hausdorff group law (i.e. $u\bullet v=v\bullet u$) if and only if they commute as elements of the Lie algebra $\mathfrak u$ (i.e. [u,v]=0).
- 5. Let t be the standard coordinate on $\mathbb{G}_a = \mathbb{A}^1_F$, so that $\mathcal{O}(\mathbb{G}_a) = F[t]$. Write down explicitly in terms of t the comultiplication and counit on $\mathcal{O}(\mathbb{G}_a)$. Show that $F[\mathbb{G}_a] = \mathcal{O}(\mathbb{G}_a)^* = F[N]$ is the power series algebra in one variable N, and describe the coproduct

$$\Delta \colon F\llbracket \mathbb{G}_a \rrbracket \to F\llbracket \mathbb{G}_a \rrbracket \, \hat{\otimes}_F \, F\llbracket \mathbb{G}_a \rrbracket$$

on $F\llbracket \mathbb{G}_a \rrbracket$. Show that the image of Δ is not contained in the uncompleted tensor product $F\llbracket \mathbb{G}_a \rrbracket \otimes_F F\llbracket \mathbb{G}_a \rrbracket$ (so $F\llbracket \mathbb{G}_a \rrbracket$ is genuinely a complete Hopf algebra, not a Hopf algebra in the usual sense).